147 research outputs found

    Automated array-CGH optimized for archival formalin-fixed, paraffin-embedded tumor material

    Get PDF
    BACKGROUND: Array Comparative Genomic Hybridization (aCGH) is a rapidly evolving technology that still lacks complete standardization. Yet, it is of great importance to obtain robust and reproducible data to enable meaningful multiple hybridization comparisons. Special difficulties arise when aCGH is performed on archival formalin-fixed, paraffin-embedded (FFPE) tissue due to its variable DNA quality. Recently, we have developed an effective DNA quality test that predicts suitability of archival samples for BAC aCGH. METHODS: In this report, we first used DNA from a cancer cell-line (SKBR3) to optimize the aCGH protocol for automated hybridization, and subsequently optimized and validated the procedure for FFPE breast cancer samples. We aimed for highest throughput, accuracy, and reproducibility applicable to FFPE samples, which can also be important in future diagnostic use. RESULTS: Our protocol of automated array-CGH on archival FFPE ULS-labeled DNA showed very similar results compared with published data and our previous manual hybridization method. CONCLUSION: This report combines automated aCGH on unamplified archival FFPE DNA using non-enzymatic ULS labeling, and describes an optimized protocol for this combination resulting in improved quality and reproducibility

    Opening the archives for state of the art tumour genetic research: sample processing for array-CGH using decalcified, formalin-fixed, paraffin-embedded tissue-derived DNA samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular genetic studies on rare tumour entities, such as bone tumours, often require the use of decalcified, formalin-fixed, paraffin-embedded tissue (dFFPE) samples. Regardless of which decalcification procedure is used, this introduces a vast breakdown of DNA that precludes the possibility of further molecular genetic testing. We set out to establish a robust protocol that would overcome these intrinsic hurdles for bone tumour research.</p> <p>Findings</p> <p>The goal of our study was to establish a protocol, using a modified DNA isolation procedure and quality controls, to select decalcified samples suitable for array-CGH testing. Archival paraffin blocks were obtained from 9 different pathology departments throughout Europe, using different fixation, embedding and decalcification procedures, in order to preclude a bias for certain lab protocols. Isolated DNA samples were subjected to direct chemical labelling and enzymatic labelling systems and were hybridised on a high resolution oligonucleotide chip containing 44,000 reporter elements.</p> <p>Genomic alterations (gains and losses) were readily detected in most of the samples analysed. For example, both homozygous deletions of 0.6 Mb and high level of amplifications of 0.7 Mb were identified.</p> <p>Conclusions</p> <p>We established a robust protocol for molecular genetic testing of dFFPE derived DNA, irrespective of fixation, decalcification or sample type used. This approach may greatly facilitate further genetic testing on rare tumour entities where archival decalcified, formalin fixed samples are the only source.</p

    Overwintering Hosts for the Exotic Leafroller Parasitoid, Colpoclypeus florus: Implications for Habitat Manipulation to Augment Biological Control of Leafrollers in Pome Fruits

    Get PDF
    Thirty sites of managed and native habitats were surveyed for leafrollers (Lepidoptera: Tortricidae) in the apple producing region of central Washington State and northern Oregon from September through November 1997–2000 to discover species that supported overwintering by the parasitoid Colpoclypeus florus (Walker) (Hymenoptera: Eulophidae). C. florus, a species introduced from Europe, requires medium to large host larvae late in autumn on which to overwinter, and few leafroller species display this biology. Over the four years, five potential C. florus hosts were collected, including: Ancylis comptana (Froelich), Xenotemna pallorana (Robinson), and Syndemis sp. (Tortricidae), Filatima sp. (Gelechiidae), and Caloptilia burgessiellia (Zeller) (Gracillariidae). Of these, A. comptana, Syndemis sp., and Filatima sp. have been confirmed as overwintering hosts for C. florus. During the four years, the Syndemis sp. was rare and observed at only one location feeding on redosier dogwood, Cornus sericea L. (Cornales: Cornaceae) although, at this location, many of the larvae collected were parasitized by C. florus. Filatima sp. was common in the Yakima valley feeding on balsam poplar, Populus balsamifera L. ssp. trichocarpa (Torr. & Gray ex Hook) Brayshaw (Malpighiales: Salicaceae) but was rarely parasitized. A. comptana, however, was collected at many locations in central Washington and was frequently found as an overwintering host for C. florus. A. comptana was found feeding on two Rosaceae: Wood's rose, Rosa woodsii Lindl., and strawberry, Fragaria ananassa Duchesne (Rosales: Rosaceae). Based on the number of host larvae collected, A. comptana appears to be the primary overwintering host for C. florus in Washington. Introduction of A. comptana populations to near-orchard habitats may facilitate biological control of leafrollers that are orchard pests

    Quantitative copy number analysis by Multiplex Ligation-dependent Probe Amplification (MLPA) of BRCA1-associated breast cancer regions identifies BRCAness

    Get PDF
    Our group has previously employed array Comparative Genomic Hybridization (aCGH) to assess the genomic patterns of BRCA1-mutated breast cancers. We have shown that the so-called BRCA1-like(aCGH) profile is also present in about half of all triple-negative sporadic breast cancers and is predictive for benefit from intensified alkylating chemotherapy. As aCGH is a rather complex method, we translated the BRCA1(aCGH) profile to a Multiplex Ligation-dependent Probe Amplification (MLPA) assay, to identify both BRCA1-mutated breast cancers and sporadic cases with a BRCA1-like(aCGH) profile. The most important genomic regions of the original aCGH based classifier (3q22-27, 5q12-14, 6p23-22, 12p13, 12q21-23, 13q31-34) were mapped to a set of 34 MLPA probes. The training set consisted of 39 BRCA1-like(aCGH) breast cancers and 45 non-BRCA1-like(aCGH) breast cancers, which had previously been analyzed by aCGH. The BRCA1-like(aCGH) group consisted of germline BRCA1-mutated cases and sporadic tumours with low BRCA1 gene expression and/or BRCA1 promoter methylation. We trained a shrunken centroids classifier on the training set and validation was performed on an independent test set of 40 BRCA1-like(aCGH) breast cancers and 32 non-BRCA1-like(aCGH) breast cancer tumours. In addition, we validated the set prospectively on 69 new triple-negative tumours. BRCAness in the training set of 84 tumours could accurately be predicted by prediction analysis of microarrays (PAM) (accuracy 94%). Application of this classifier on the independent validation set correctly predicted BRCA-like status of 62 out of 72 breast tumours (86%). Sensitivity and specificity were 85% and 87%, respectively. When the MLPA-test was subsequently applied to 46 breast tumour samples from a randomized clinical trial, the same survival benefit for BRCA1-like tumours associated with intensified alkylating chemotherapy was shown as was previously reported using the aCGH assay. Since the MLPA assay can identify BRCA1-deficient breast cancer patients, this method could be applied both for clinical genetic testing and as a predictor of treatment benefit. BRCA1-like tumours are highly sensitive to chemotherapy with DNA damaging agents, and most likely to poly ADP ribose polymerase (PARP)-inhibitors. The MLPA assay is rapid and robust, can easily be multiplexed, and works well with DNA derived from paraffin-embedded tissue

    Genomic profiling of CHEK2*1100delC-mutated breast carcinomas

    Get PDF
    Background: CHEK2*1100delC is a moderate-risk breast cancer susceptibility allele with a high prevalence in the Netherlands. We performed copy number and gene expression profiling to investigate whether CHEK2*1100delC breast cancers harbor characteristic genomic aberrations, as seen for BRCA1 mutated breast cancers. Methods: We performed high-resolution SNP array and gene expression profiling of 120 familial breast carcinomas selected from a larger cohort of 155 familial breast tumors, including BRCA1, BRCA2, and CHEK2 mutant tumors. Gene expression analyses based on a mRNA immune signature was used to identify samples with relative low amounts of tumor infiltrating lymphocytes (TILs), which were previously found to disturb tumor copy number and LOH (loss of heterozygosity) profiling. We specifically compared the genomic and gene expression profiles of CHEK2*1100delC breast cancers (n = 14) with BRCAX (familial non-BRCA1/BRCA2/CHEK2*1100delC mutated) breast cancers (n = 34) of the luminal intrinsic subtypes for which both SNP-array and gene expression data is available. Results: High amounts of TILs were found in a relatively small number of luminal breast cancers as compared to breast cancers of the basal-like subtype. As expected, the

    Array-CGH and breast cancer

    Get PDF
    The introduction of comparative genomic hybridization (CGH) in 1992 opened new avenues in genomic investigation; in particular, it advanced analysis of solid tumours, including breast cancer, because it obviated the need to culture cells before their chromosomes could be analyzed. The current generation of CGH analysis uses ordered arrays of genomic DNA sequences and is therefore referred to as array-CGH or matrix-CGH. It was introduced in 1998, and further increased the potential of CGH to provide insight into the fundamental processes of chromosomal instability and cancer. This review provides a critical evaluation of the data published on array-CGH and breast cancer, and discusses some of its expected future value and developments

    Loss of heterozygosity at the ATBF1-A locus located in the 16q22 minimal region in breast cancer

    Get PDF
    Abstract Background Loss of heterozygosity (LOH) on the long arm of chromosome 16 is one of the most frequent genetic events in solid tumors. Recently, the AT-motif binding factor 1 (ATBF1)-A gene, which has been assigned to chromosome 16q22.3-23.1, was identified as a plausible candidate for tumor suppression in solid tumors due to its functional inhibition of cell proliferation and high mutation rate in prostate cancer. We previously reported that a reduction in ATBF1-A mRNA levels correlated with a worse prognosis in breast cancer. However, the mechanisms regulating the reduction of ATBF1-A mRNA levels (such as mutation, methylation in the promoter region, or deletion spanning the coding region) have not been fully examined. In addition, few studies have analyzed LOH status at the ATBF1-A locus, located in the 16q22 minimal region. Methods Profiles of ATBF1-A mRNA levels that we previously reported for 127 cases were used. In this study, breast cancer specimens as well as autologous blood samples were screened for LOH using 6 polymorphic microsatellite markers spanning chromosome band 16q22. For mutational analysis, we selected 12 cases and analyzed selected spots in the ATBF1-A coding region at which mutations have been frequently reported in prostate cancer. Results Forty-three cases that yielded clear profiles of LOH status at both D16S3106 and D16S3018 microsatellites, nearest to the location of the ATBF1-A gene, were regarded as informative and were classified into two groups: LOH (22 cases) and retention of heterozygosity (21 cases). Comparative assessment of the ATBF1-A mRNA levels according to LOH status at the ATBF1-A locus demonstrated no relationship between them. In the 12 cases screened for mutational analysis, there were no somatic mutations with amino acid substitution or frameshift; however, two germ line alterations with possible polymorphisms were observed. Conclusion These findings imply that ATBF1-A mRNA levels are regulated at the transcriptional stage, but not by genetic mechanisms, deletions (LOH), or mutations.</p

    CpG island hypermethylation of BRCA1 and loss of pRb as co-occurring events in basal/triple-negative breast cancer

    Get PDF
    Triple-negative breast cancer (TNBC) occurs in approximately 15% of all breast cancer patients, and the incidence of TNBC is greatly increased in BRCA1 mutation carriers. This study aimed to assess the impact of BRCA1 promoter methylation with respect to breast cancer subtypes in sporadic disease. Tissue microarrays (TMAs) were constructed representing tumors from 303 patients previously screened for BRCA1 germline mutations, of which a subset of 111 sporadic tumors had previously been analyzed with respect to BRCA1 methylation. Additionally, a set of eight tumors from BRCA1 mutation carriers were included on the TMAs. Expression analysis was performed on TMAs by immunohistochemistry (IHC) for BRCA1, pRb, p16, p53, PTEN, ER, PR, HER2, CK5/6, CK8, CK18, EGFR, MUC1, and Ki-67. Data on BRCA1 aberrations and IHC expression was examined with respect to breast cancer-specific survival. The results demonstrate that CpG island hypermethylation of BRCA1 significantly associates with the basal/triple-negative subtype. Low expression of pRb, and high/intense p16, were associated with BRCA1 promoter hypermethylation, and the same effects were seen in BRCA1 mutated tumors. The expression patterns of BRCA1, pRb, p16 and PTEN were highly correlated, and define a subgroup of TNBCs characterized by BRCA1 aberrations, high Ki-67 (≥ 40%) and favorable disease outcome. In conclusion, our findings demonstrate that epigenetic inactivation of the BRCA1 gene associates with RB/p16 dysfunction in promoting TNBCs. The clinical implications relate to the potential use of targeted treatment based on PARP inhibitors in sporadic TNBCs, wherein CpG island hypermethylation of BRCA1 represents a potential marker of therapeutic response

    Increased level of chromosomal damage after irradiation of lymphocytes from BRCA1 mutation carriers

    Get PDF
    Deleterious mutations in the BRCA1 gene predispose women to an increased risk of breast and ovarian cancer. Many functional studies have suggested that BRCA1 has a role in DNA damage repair and failure in the DNA damage response pathway often leads to the accumulation of chromosomal aberrations. Here, we have compared normal lymphocytes with those heterozygous for a BRCA1 mutation. Short-term cultures were irradiated (8Gy) using a high dose rate and subsequently metaphases were analysed by 24-colour chromosome painting (M-FISH). We scored the chromosomal rearrangements in the metaphases from five BRCA1 mutation carriers and from five noncarrier control samples 6 days after irradiation. A significantly higher level of chromosomal damage was detected in the lymphocytes heterozygous for BRCA1 mutations compared with normal controls; the average number of aberrations per mitosis was 3.48 compared with 1.62 in controls (P=0.0001). This provides new evidence that heterozygous mutation carriers have a different response to DNA damage compared with noncarriers and that BRCA1 has a role in DNA damage surveillance. Our finding has implications for treatment and screening of BRCA1 mutation carriers using modalities that involve irradiation
    corecore